
!" #$%&'()'* $+,-.#/0,1 $
'2304#,5678

!"#$%&'()*+$*#,	President	
,"#$-.'()*+$*# /"0()"1-+(, 	

©	2015	AxonAI,	Inc.	Proprietary	Information.% 2#-%&3*)%4-%5#6*+$)*#,	Chief	Scientist	
.3*)-7#6*+$)*#/"0()"1-+(, 	

	

1	

The	AXON:OS	Framework%

!"#$%&'()(*+#,(-.&+/&01"2,&3-.(**$4(-5(&6##*$5".$+-7&

Swarm Intelligence seeks to create artificially intelligent systems where
many individually simple active components (“agents”) self-organize to
provide the desired application functions as emergent features of the
system [1]. Thereby it differs from traditional Artificial Intelligence (AI)
approaches where the application is realized with complex reasoning
strategies. Robust self-organization of simple entities for emergent sys-
tem-level functions (i.e., not explicitly represented or reasoned over at
the individual level) is demonstrated in many large-scale systems in na-
ture (Figure 1), ranging from colonies of single-celled organisms that,
under threatening environmental conditions, may act as a collective to
ensure survival, through many examples of social insect colonies, to the
flocking behavior of birds, fish, predators, and even crowds of humans.

Engineering applications with Swarm Intelligence rather than traditional AI has several ad-
vantages: The simplicity of the swarming agents that comprise the application allows the deploy-
ment on deprived (e.g., low bandwidth, small CPU) platforms, while multi-agent systems of the
Distributed-AI lineage are made up of complex individual agents with intensive reasoning and
semantically deep communication. Swarming agent systems are also easier to distribute over a
multi-host infrastructure due to their finer granularity. The decentralized reasoning processes in
self-organizing systems with emergent functionalities ensure that there is no single point of failure

(robustness) and no bottleneck as the system grows in scale. Also, the fact that swarming systems continuously adjust their
organization to adapt to changing conditions makes them naturally suited to handle highly dynamic environments.

To achieve the desired robustness to component failure and adaptivity to changing con-
ditions, resources, or requirements, the simple agents comprising a natural or engineered
self-organizing system rely on stigmergic communication through a shared physical or
computational environment. ‘Stigmergy’ is a term coined by French biologist Pierre-Paul
Grassé more than 50 years ago from the Greek words ‘stigma’, meaning ‘mark’, and ‘er-
gon’, meaning ‘work’, to describe this form of indirect communication [2]. Specifically,
each agent’s behavioral program selects actions as a function of its current internal state
and the state of the environment nearby (e.g., presence or absence of markers). The ac-
tions may modify the internal agent state as well as the surrounding environment (e.g.,
agent movement or marker manipulation). Any change in the environment is now visible
to other nearby agents and may affect their behavior – thus information has been trans-
ferred without the need for agents to engage directly or even be aware of their presence.
Figure 2 illustrates the key elements of Stigmergy, including agent-independent processes
in the environment (e.g., decay of local marker concentrations) that also affect the agent
system.

Due to the prevalence of Stigmergy, all swarming applications share the same fundamental architecture. There are one or more
populations of agents, each with an internal state, a behavioral program that is executed continuously and independently of
other agents, and location(s) in one or more topology (e.g., graph, grid, n-dimensional volume). Also, there are markers of dif-
ferent types that may be placed at locations in the topology, read and manipulated by agents with access to those locations, as
well as changed by environmental processes over time. Realizing a specific swarming application requires the engineer to select
the appropriate topologies, agent state and behavior representations, marker vocabulary, and environmental processes – in
addition to the typical engineering tasks of developing data and user interfaces.

Figure 1. Examples of Nature’s Swarming Systems.

Figure 2. Agents Self-Organize

through Indirect Communication.

!" #$%&'()'* $+,-.#/0,1 $
'2304#,5678

!"#$%&'()*+$*#,	President	
,"#$-.'()*+$*# /"0()"1-+(, 	

©	2015	AxonAI,	Inc.	Proprietary	Information.% 2#-%&3*)%4-%5#6*+$)*#,	Chief	Scientist	
.3*)-7#6*+$)*#/"0()"1-+(, 	

	

2	

AxonAI has developed and is continuously refining a general-
purpose software framework for the rapid development of
swarming applications. “AXON:OS” (Figure 3) is a growing col-
lection of Java components for specific topologies, agents, mark-
ers, and threads (as well as associated user and data interface el-
ements) that can be extended for specific application purposes
and assembled (configuration driven) into mature applications.
We already realized more than 10 different applications and
demonstrations in AXON:OS and any new project contributes
to the further expansion, refinement, and hardening of the
framework.

AXON:OS not only supports the rapid development of applica-
tions that draw on classical swarming approaches, but it also pro-
vides architectural components for the construction of polyagent
models. Classical swarming applications tend to be relatively unstructured. We may associate an agent with a domain entity
(e.g., UAV, document) and in the self-organization of the swarm, the agent identifies actions for that entity (e.g., flight trajec-
tory, analyst recommendation [3]). Or we may have many agents perform a Monte-Carlo sampling of domain processes (e.g.,

crowd dynamics [4]). In contrast, polyagent models [5] are hierarchically
structured swarms of swarms. Here we often associate a swarm of sim-
ple agents with a single domain entity, which allows us to perform com-
plex reasoning about that entity and its complex interactions with other
entities. Thus, poly-agent models exhibit a level of complexity similar to
traditional AI reasoning processes, but without giving up the inherent
ad-vantages of the Swarm Intelligence approach.

Figure 4 shows a polyagent model for the dynamic and coordinated
planning of movement trajectories (red lines) of multiple entities (bigger
blue circles) on a geographic map marked up (shades of green) with
varying levels of visit priorities. Each entity is represented by a swarm of
agents that explore alternative trajectories for their entity across the pri-
oritized geography and through time. Following the stigmergic principle
(Figure 2), these agents mark up their environment, allowing other
agents from the same or other entity swarms to include the probability
of the presence of other entities in their own reasoning.

With a long history of designing, implementing, and deploying swarming
and polyagent models and with the growing sophistication of the proprietary AXON:OS application development framework,
the team at AxonAI is in a unique position to provide robust, scalable, and adaptive solutions to complex challenges in many
domains.

8*9*#*)+*.

[1] S. Brueckner, Return from the Ant. Berlin, Germany: Humboldt University, 2000.
[2] P.-P. Grassé, “La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes

sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs,” Insectes Sociaux, vol.
6, no. 1, pp. 41–80, 1959.

[3] S. Brueckner, E. Downs, R. Hilscher, and A. Yinger, “Self-Organizing Integration of Competing Reasoners for Infor-
mation Matching,” in Self-Adaptive and Self-Organizing Systems Workshops, 2008. SASOW 2008. Second IEEE Interna-
tional Con-ference on, 2008, pp. 7–12.

[4] S. Brueckner, S. Brophy, and E. Downs, “Swarming Pattern Analysis to Identify IED Threat,” in Self-Adaptive and Self-
Organizing Systems (SASO), 2010 4th IEEE International Conference on, 2010, pp. 271–272.

[5] S. A. Brueckner, “Self-Organizing Applications with Polyagents,” Tutor. Second IEEE Int. Conf. Self-Adapt. Self-Organ.
Syst. SASO08, 2008.

Figure 3. AXON:OS Architecture – Topologies, Agents, Markers

& Model Threads + User and Data Interface Components.

Figure 4. Polyagent Path-Planning for Mobile Entities.

